Synoptic Sky Surveys and Exploration of the Time Domain

S. G. Djorgovski

(Caltech)

In collaboration with:

A. Mahabal, R. Williams,

A. Drake, M. Graham,

C. Donalek, E. Glikman, the PQ and CSS survey teams

The Great Surveys Workshop, Santa Fe, Nov. 2008

Time Domain Astrophysics

- Moving objects: Solar system, Galactic structure, exoplanets
- Variability Intrinsic

Modulation along the LOS: microlensing, ISS, eclipses, variable extinction ...

Physical causes of intrinsic variability:

- Evolution: structural changes etc., long time scales
- Internal processes, e.g., turbulence inside stars
- Accretion/collapse: protostars, CVs, GRBs, QSOs
- Thermonuclear explosions (SNe)
- Magnetic field reconnections, e.g., stellar flares
- Line of sight changes (rotation, jet instabilities...)

Variability is known on time scales from ms to 10¹⁰ yr

A broad, diverse range of interesting physics

Synoptic, panoramic surveys \rightarrow event discovery Rapid follow-up and multi- $\lambda \rightarrow$ keys to understanding

Dwarf Planets, Killer Rocks, and Snowballs

Dwarf planets and KBOs

M. Brown et al.

Planetary Hazard Asteroids

A Broad Variety of Phenomena

Flaring stars

Novae, Cataclysmic Variables

Supernovae

Gamma-Ray Bursts

Gravitational Microlensing

Accretion to SMBHs

Supernova Breakout Shocks

Long anticipated, but just recently discovered (Soderberg et al. 2008, Schawinski et al. 2008, Gezari et al. 2008, Modjaz et al. 2008)

An Archival Detection of a SN II Flare in SN 1054?

Polcaro & Martocchia 2005, astro-ph/0511187: An archival record from *Tractatus de Ecclesia S*. *Petri Aldenburgensi*, by anonymous monk:

And the most blessed Pope Leo ... on the 18th day before the first of May [i.e., 11 April 1054], a Monday, around midday, happily departed this world. And at the same hour as his leaving of the flesh, not only in Rome, where his body lies, but also *all over the world there appeared to men a circle in the sky of extraordinary brightness which lasted for about half an hour.* Perhaps the Lord wished to say that he [the Pope] was worthy to receive a crown in Heaven between those who love Him.

Flaring M Dwarfs

(just like the Solar flares, but much, much bigger)

Lynx OT (CSS)

SDSS Counterpart

1990.1793

Super-flares from normal (~ Solar type) stars →

The cause(s), duration, and frequency of these outbursts are currently **unknown**

Accretion Flares From Otherwise Quiescent SMBHs Tidal disruption of passing-by stars, and fallback.

Tidal disruption of passing-by stars, and fallback. Expected rate $\sim 10^{\text{-4}}\,/\text{galaxy/yr},\,L_{\text{peak}}\sim 10^{\text{44}}\,\text{erg/s}$

Komossa et al. (Rosat)

Accretion flicker from the SMBH in our own Galaxy:

(Ghez et al., Keck)

Variable sources in the centers of apparently normal galaxies at $z \sim$ few tenths:

(Totani et al., SUBARU)
Subtracted Images

Unidentified Archival Transients in PQ

From "Morphological Box" to Observable Parameter Space

Along each axis the measurements are characterized by the **position, extent, sampling and resolution.** All astronomical measurements span some volume in this parameter space.

Expanding the Observable Parameter Space

Technology advances → Expanded domain of measurements

→ Discovery of new types of phenomena

How Quasars Were *Not* Discovered

Noted as variable sources even in the 19th century, but ... misclassified as variable stars (e.g., BL Lacertae)

PQ Search for Low-z Supernovae

C. Baltay, P. Nugent, et al. (LBL Nearby Supernova Factory)

To date, > 500 SNe discovered, including ~ 350 Type Ia, and some peculiar ones

- Calibration of the SN Ia Hubble diagram ³/₃
- New standard candles from SN II
- Endpoints of massive star evolution

PQ Variability-Selected CVs:

PQ Variability-Selected AGN

Previously unknown Blazar (radio source): PQV 2345-1555 (spectrum = continuum)

The Variability of Blazars

- Dominated by the jet: instabilities, internal shocks
- Variations in the source luminosity amplified by the relativistic beaming
- Much stronger at the short time scales than the regular, accretion-driven variability of AGN

Significant changes seen on time scales as short as hours

← Sometimes correlated optical / γ-ray flares

The Many Uses of Blazars

- AGN demographics and evolution
 - Constraints for AGN unification models
 - Origins of the Cosmic γ-Ray Bgd.
 - Possible new AGN sub-populations?
- Understanding the cosmic accelerators
 - AGN jet origins and their physics
 - The UHECR connection? Long-term future of particle physics?
- Astrophysical foregrounds to CMBR fluctuations at high ℓ
- A new probe of the cosmic star formation history, through extragalactic bgd. light as a f(z)
 - EBL photon gas is optically thick to high-energy photons

Photon Energy (GeV)

The Cosmic Accelerators: TeV γ-ray

Flux [mCrab

Detections of Blazars

About 12 so far. Variability on time scales of minutes implies origin from very compact regions - possibly internal shocks

PKS 2155-304

9-29.5 (HESS)

-30.5

-31.5

22.05

22.00

21.95

21.90

The Cosmic Accelerators: Understanding the Origins of the UHECR Spectrum

PQ Variability of AGN and Blazars

- Characterize the highamplitude variability of known QSOs and Blazars using PQ data
- Use to devise a pure optical variability (and color?) selection of Blazars
- Search for highly variable (non-transient) objects and get their spectroscopic IDs
- We recover some known QSOs and Blazars, and find some new ones

PQ + CSS Archival Light Curves for 3C 454.3

A total of 155 exposures on 54 dates, time baseline ~ 6 years

Thousands more blazar light curves to come...

CMB Foreground Radio Sources

Flat-spectrum foreground radio sources detected in WMAP data

(Chen & Wright 2008, Wright et al. 2008)

- All are likely **blazars** (FSRQ)
- All seem to be highly variable
 - Characterize their optical variability
- Some are unidentified, and some may be mis-identified
 - Look for purely variability-based IDs
- Understanding of this population is essential for CMBR cosmology at high angular frequencies, e.g., with *Planck*

A Variability-Selected
ID for an Unidentified
WMAP Source
(Presumably a Blazar/FSRQ)

(Morton et al. 2008, in prep.)

WMAP error circle: ~4'
Unidentified source WMAPJ1628-0903

Brightens by ~1.5 mag in one day!

The Palomar-Quest Event Factory

Asteroids: The Main Contaminant

- The vast majority of "transient" detections are *mostly asteroids*
- We find ~ 1 3 asteroids / deg^2 down to ~ 20 21 mag, at moderate ecliptic latitudes

✓ Only ~ 50% are previously known

N They outnumber the astrophysical transients by a factor of $\sim 10^2$ - 10^3 !

Sometimes they overlap stars:

- Optimized cadence: scan and rescan ~ 1 - 4 hours apart
- Crossmatch to asteroid DB's (HORIZONS, IMCCE)
- Improved proper motions and colors

PQ Real-Time SN Discoveries

P200 spectroscopy within an hour of initial detection: Young SNe Ia

PQT 080119:091534+081356 - A Dwarf Nova

PQ Real-Time Discovered AGN

i

Catalina Real-Time Transient Survey

CSS is a search for NEOs, led by S. Larson, E. Beshore, et al. (UAz LPL). The survey uses the 24-inch Schmidt on Mt. Bigellow, and a single, unfiltered 4k×4k CCD (and also telescopes at Mt. Lemmon and Siding Spring). Limiting mag ~ 19.5, Coverage ~ 1000 deg²/night

We are processing their data stream to look for astrophysical transients

Fast transient (a flare star), CSS080118:112149–131310 4 individual exposures, separated by 10 min

Early Results from CRTS

In the first \sim 6 mos. of operation:

- Over 500 confirmed transients discovered
- Covered the cumulative area $> 450,000 \ deg^2$
- About 100 SNe, including some ultraluminous ones
- Over 60 new CVs, plus many known one
- Many blazars, flaring stars, etc.

A significant population of SNe in faint host galaxies; complements other surveys

CSS 071218:120153-185822 = SN 2007sr: SN Ia in the Antennae merger

Scientific Measurement Cycle

But what if the

phenomena we study last/change on time scales of *minutes/hours*?

... and the data rates are measured in TB's per day or higher?

... and the measurement, data, computation assets are distributed?

What is required is a system which is:

- Fully automatic/robotic, with no humans in the loop
- Draws on a number of important computational technologies

The VOEventNet Project

PI: R. Williams

- A telescope sensor network with a feedback
- Scientific measurements spawning other measurements and data analysis in the real time
- Please see http://voeventnet.caltech.edu

VOEventNet Real-Time Event Publishing

- Ingesting and distributing multiple even streams: GCN, PQ, CSS,...
- Events published on the web, RSS feed, Jabber, and Google Sky

Automatically Generated Image Cutouts and Coadds, **Webpages for Each Event**

Human-readable relevant event data

Automated Links to VO Data Resources

Dynamically updated, used as an input to event classifiers

Building a Better Baseline: HyperSky

The next generation scientific sky atlas

Dynamical, evolving, multi-layer, multi-epoch, federated data set + On-demand computed custom data products

Panoramic imagery from different sky surveys (e.g., DPOSS, SDSS, PQ, 2MASS, ...) + extracted source catalogs and metadata, identified by a time epoch, bandpass, seeing, etc.

Optimized coadd of selected images (e.g., by bandpass, time interval, seeing, S/N...) + source catalogs + flux time histories (variability) for each source + linked information

The HyperSky Conceptual Architecture

- A modular, dynamical system for analysis, data mining, and follow-up of large synoptic sky surveys
- Builds on the existing foundations from VO, etc.
- Real-time and archival data exploration

Towards Event Portfolios

A system to capture and organize heterogeneous data and information on astronomical events, using semantic web technologies

(M. Graham & R. Williams)

Input into event classifiers and other scientific analysis

Bayesian and Machine Learning Event

Classification In collaboration with M. Turmon, J. Jewell, et al. (JPL)

- Bayesian methods are more tolerant of heterogeneous or missing data; easy to add new event classes
- Machine learning approach (ANN and SVM, unsupervised classif.) will get better as the database of known events grows

Automating the Optimal Follow-Up

What type of follow-up data has the greatest potential to discriminate among the competing models (event classes)?

The (Tsunami) Wave of the Future

Now: data streams of ~ 0.1 TB / night, ~ 10 - 10² transients / night (SDSS, PQ, various SN surveys, asteroid surveys)

Forthcoming on a time scale ~ 1 - 5 years: ~ 1 TB / night, ~10⁴ transients / night (PanSTARRS, Skymapper, VISTA, VST...)

• Forthcoming in ~ 5 - 10 years: LSST, ~ 20 TB / night, $\sim 10^5$ - 10^6 transients / night

A major, qualitative change!

- Observational follow-up needs:
 - Rapid photometric/positional monitoring
 - Rapid spectroscopy
 - Information/computation infrastructure

Transient classification technologies are essential

Some Things We Have Learned

- In a single-pass, there are $\sim 10^{-2}$ transients/ deg^2 down to ~ 20 mag at moderate/high Galactic latitudes
- There are $\sim 10^2$ 10^3 asteroids for each astrophysical transient
 - \rightarrow A joint asteroid / transient analysis is necessary
- Most of the transients are known types of objects, mainly CVs and SNe, with some AGN and flaring stars
 - Apossibility of new types of objects or phenomena is still open
- The quality of the *baseline/fiducial sky* is a key issue
 - It must be deep, clean, complete, and wavelength-matched, and dynamically evolving
- Rapid follow-up is necessary in order to understand the transients: lightcurves, colors, spectroscopy, other λ 's
- Next-night science is *much* easier than real-time

Software, Software!

- All data-intensive projects are primarily software projects. Plan costs, development accordingly
 - You can leverage a lot, but you will still be writing lots of software
- Striking the optimal balance between completeness and contamination is very hard •
- In a massive data stream, and a complex software system, most unlikely things will happen, and most of them are bad
- Lots of different kinds of artifacts can initially look as transients. You can filter them out, but it takes some work.
- There is a tension between the real-time processing demands, and non-time-critical processing and archival operations. Data flows and databases and survey operations should be designed with this in mind.

The Time Domain Astronomy (TDA)

- Data fusion (multi-epoch, multi-wavelength, contextual,...) is a key for interpretation and understanding of TD phenomena
 - A survey optimized for a maximum event discovery rate cannot be also efficient for a self-follow-up
 - Dedicated follow-up facilities are a must
 - Spectroscopy is the key bottleneck, and this will get worse
- The same data stream can feed multiple scientific studies
 - However, specialized surveys/experiments are optimized for discovery of particular types of phenomena; their cadences, depths, bandpasses, etc., represent observational filters which may preclude discoveries of different and new types of phenomena
- TDA is an inherently *an astronomy of telescope systems*, and it requires a *strong computational/informational infrastructure*
 - Automated event classification is an essential technology
 - TDA is the "killer app" of Virtual Observatory